\* \* \* \* \*

\* \* \* \* \*

使用说明书

\* \* \* \* \*

. . . . .

# IQ+FLOW®系列 数字质量流量/压力控制器 对于气体

文档号: 9.17.045 版本号: W日期: 2022年7月19日

. . . . .

. . . . .

. . . . .

#### 注意事项

安装使用本产品前,请仔细阅读本文档。 如未按照操作手册操作,很可能造成人身伤害和/或设备损坏。

**Order**Bronkhorst®

# 版权所有

© 2022 Bronkhorst High-Tech B.V.

保留所有权利。如未事先征得出版商书面许可,任何人士不得以任何形式或方式,复制本出版物任何内容。

# 免责申明

我司已对本文档所有信息进行审慎审查,我司认定所有信息完全可靠。Bronkhorst High-Tech B.V. 不对本文档可能存在的任何错误、表述不当或信息缺失承担责任。本文档所列材料仅用于进行信息说明,不会派生任何权利。

Bronkhorst High-Tech B.V. 保留修改或改进旗下产品,更新文档内容相关权利,进行该等事宜前,无需通知任何特定个人或组织。实际设备规格与产品包装很可能与文档所述内容存在差异。使用说明书如中英文版本内容存在差异,皆以英文版本为准。

# 本文档的符号



重要信息。若忽略该信息,很可能导致设备损坏与人身伤害的风险增加。



提示信息、有用信息和注意事项。该信息可帮助用户使用仪器和/或确保仪器以最佳性能运行。



更多信息参见参考文档,如需获取,可访问指定网站下载,也可联系 Bronkhorst 代表获取。

# 设备接收

检查外包装,确定运输期间是否造成损坏。若包装受损,请立即通知当地承运人承担相应责任。同时应向 Bronkhorst 代表出具相应报告。

请小心拆开包装箱。确认包装内产品运输期间是否损坏。若包装受损,请立即通知当地承运人承担相应责任。 同时应向 Bronkhorst 代表出具相应报告。



- · 检查装箱单,确认收到交货范围所有物品
- 请妥善保存相应零备件,丢弃包材时,务必仔细检查

退货运输相关事宜参见拆除和退货说明。

# 设备仓储

- 设备应用原包装包装后,储存在气候受控的环境中。
- 注意!不得将设备储存在温度过高或过低的环境中。
- 储存条件相关信息参见技术规格(数据表)。

# 保修条款

Bronkhorst<sup>®</sup> 承诺,自产品交付之日起三年内,产品不存在任何材料和工艺缺陷,但前提是产品使用须符合相应产品参数,且不存在产品滥用、物理损坏或污染的情形。若产品在保修期内出现无法正常运转的情况,我司可提供免费维修或更换服务。通常情况下,可在一年内保修或原始保修期限剩余时间内保修,以较长的时间为准。



另请参见销售条件第9节(保修): www.bronkhorst.com/int/about/conditions-of-sales/

保修范围为所有初始缺陷和潜在缺陷、随机故障和无法确定的内部原因。因客户造成的各类故障与损坏,如污染、电气连接不当、物理撞击等,均无法提供保修服务。

若经过认定,返厂维修产品的相关维修项目部分或全部超出保修范围,则可能会收取相应维修费用。

除非事先另有约定,否则任何一方在保修范围内履行相应义务时,Bronkhorst High-Tech B.V. 均须预付运费。未 盖章退货费用记入维修发票。进口和/或出口费用,以及国外运输时,须向承运商支付的各项费用由客户自行承 担。

# 一般安全措施

本产品用户应具有适当资质,了解电击危险,熟悉避免可能伤害的相应安全防范要求。使用本产品前,请仔细阅读操作说明。

操作前,请确保电源线已连接正确接地的电源插座。每次使用前,均须检查连接电缆、裂纹或断裂。

设备与附件须符合相应规格与操作要求,否则很可能导致设备安全性降低。

不得拆卸本仪器。仪器内没有可换修零件。若仪器存在任何缺陷,请将设备退回至 Bronkhorst High-Tech B.V.。 产品上可能贴有一个或多个警示标志标签。标志含义如下:



一般警告; 请参考使用手册操作说明



操作期间,该位置可能表面温度较高



电击危险; 内部电气部件

为避免触电与发生火灾,请务必选购 Bronkhorst 替换组件。若额定值及类型相同,也可使用符合适用国家安全 认证的标准保险丝。其他不会对产品安全性造成影响的组件可从其他供应商处采购,但所采购组件须与原装组 件具有相当属性。为保证产品的准确性与功能性,所选零件只能从 Bronkhorst 处采购。如有任何替换组件适用 性问题,请联系 Bronkhorst 代表,了解相关信息。

# 目录

| 1                        |    |
|--------------------------|----|
| 1.1 本手册的范围               | 7  |
| 1.2 产品描述                 | 7  |
| 1.3 其他文档                 | 7  |
| 2 正在启动                   | 8  |
| 2.1 检查特性                 | 8  |
| 2.2 检查额定压力               | 8  |
| 2.3 检查管道                 | 8  |
| 2.4 安装系统                 | 8  |
| 2.5 泄漏检查                 | 10 |
| 2.6 电气连接                 | 10 |
| 2.7 模拟/数字操作              | 12 |
| 2.8多功能开关操作               | 12 |
| 2.9 吹扫                   | 12 |
| 2.10 校零                  | 13 |
| 2.11 校准                  | 13 |
| 2.12 供应压力                | 13 |
| 2.13 型号钥匙                |    |
| 2.13.1 型号 IQF / IQP      |    |
| 2.13.2 型号 IQM            |    |
| 3 基本操作                   |    |
| 3.1 一般规定                 |    |
| 3.2 模拟操作                 |    |
| 3.3 手动接口:按钮、LED 指示灯和旋转开关 |    |
| 3.3.1 按钮操作(仅限单通道版本)      |    |
| 3.3.2 LED 指示灯功能          |    |
| 3.3.3 旋转开关操作(仅限多通道版本)    |    |
| 3.4 基本 RS232 操作          |    |
| 3.4.1 连接                 |    |
| 3.4.2 动态数据交换 (DDE)       |    |
| 3.4.3 FlowDDE            |    |
| 3.4.4 软件                 |    |
| 3.4.5 FlowDDE 参数号        |    |
| 3.4.6 波特率设置              |    |
| 3.5 RS485 基本操作           |    |
| 3.5.1 连接                 |    |
| 3.5.2 软件                 |    |
| 3.5.3 从机地址、波特率和奇偶校验设置    |    |
| 3.6 基本参数和属性              |    |
| 3.6.1 引言                 |    |
| 3.6.2 基本测量和控制参数          |    |
| 3.6.3 基本标识参数             |    |
| 4 高级操作                   |    |
| 4.1 读取和更改仪器参数            |    |
|                          |    |

| 4.1.1 | 特殊参数              | 30 |
|-------|-------------------|----|
| 4.1.2 | 流体信息              | 31 |
| 4.1.3 | 高级测量和控制参数         | 33 |
| 4.1.4 | 控制器参数             | 33 |
| 4.1.5 | 显示筛选程序            | 35 |
| 4.1.6 | 报警/状态参数           | 37 |
| 4.1.7 | 计数器参数             | 37 |
| 4.2   | 仪表特殊功能            | 37 |
| 4.2.1 | 自动校零              | 37 |
| 4.2.2 | 更改默认控制模式          | 38 |
| 4.2.3 | 禁用按钮(仅限单通道版本)     | 38 |
| 4.2.4 | - 设置数字输出(仅限多通道版本) | 39 |
| 4.2.5 | 更改从机地址、波特率和奇偶校验   | 39 |
| 5     | <b>坟障排除和维修</b>    | 41 |
| 5.1   | 一般规定              | 41 |
| 5.2   | 指示灯指示             | 41 |
| 5.3 袁 | <b>枚障排除常见情况</b>   | 41 |
| 5.4   | 服务                | 42 |
| 6     | 退回                | 43 |
| 6.1 拆 | f除和退货说明           | 43 |
| 6.2 々 | 心置(使用寿命结束)        | 43 |

# 1 引言

# 1.1 本手册的范围

本手册介绍了IQ+FLOW®系列数字式气体质量流量/压力控制器。本手册还介绍了产品信息、安装说明、操作、维护和故障排除信息。







# 1.2 产品描述

IQ+FLOW®系列是同类产品中体积最小的基于芯片的质量流量仪表之一,适用于压力高达 10 bar(145 psi),温度在 5 - 50 ℃(41 - 122 °F)之间的应用场景。流量控制器采用微系统技术,结构非常紧凑,仅为 20 x 40 x 60 毫米。(IQF)流量控制器可测量与控制 10 mln/min FS - 5 ln/min FS 的流体流速。(IQP)压力控制器的范围为 0.3 - 150psi(0.02 - 10bar)。IQ+FLOW®系列应用模块化概念,由多个 20 mm 尺寸的模块共同组成,既可作为单台仪器使用,也可作为多通道组合配置。可在独立壳体内安装多通道数字印刷电路板(每 3 个通道),构建非常紧凑的歧管(IQM)系统。在不改变尺寸的情况下,还可选装过滤器、控制阀和关断阀,满足客户特定需求。IQF 流量传感器是一种可快速响应的芯片式传感器,其主要优点在于控制响应快速可靠。这是因为采用了基于 MBC3 的印刷电路板和流量传感器,其输出信号可非常准确地对应实际的流量变化情况。

可通过模拟模式或 RS232 或 RS485 数字模式,与从机进行通信。RS232 通信在 Propar(FLOW-BUS)协议的基础上进行搭建。通过 RS485 进行数字操作,可建立多台仪器的总线系统。可支持 Modbus RTU/ASCII 和 FLOW-BUS 协议(多通道版本存在部分例外情形,参见**第 3 节**)。

# 1.3 其他文档

#### 操作手册:

- IQ+FLOW®快速安装指南(文档号: 9.17.074)
- 数字仪器操作手册(文档号: 9.17.023)
- 支持 FLOW-BUS 的 RS232 接口(文档号: 9.17.027)
- 适用于数字式质量流量/压力仪表的 Modbus 从机接口(文档号: 9.17.035)

# 技术图纸:

- IQ+FLOW® RS232/RS485 + 模拟 I/O 连接图(文档号: 9.16.101)
- IQ+FLOW®Manifold(多通道)连接图(文档号: 9.16.090)
- IQF/IQP尺寸图(文档号: 7.05.870)
- IOFD/IOPD 尺寸图(文档号: 7.05.871)
- IQM尺寸图(文档号: 7.05.760)



如需获取这些文档,可访问 www.bronkhorst.com/downloads,也可联系当地的销售及服务代表,获取所需文档

# 2 正在启动

#### 2.1 检查特性

安装 IQ+FLOW®前,请检查产品规格参数,确认符合您的需求:

- 仪器类型
  - 红色标签: 气体流量(IQF)
  - o 黄色标签:压力(IQP)
- 流量/压力率
- 仪器中需使用的介质
- 输入输出信号
- 上下游压力
- 工作温度

注: 右侧所列序列号不一定反映实际规格参数。



- IQ+FLOW®气体流量仪表设计适用于干燥、清洁的无腐蚀性气体
- IQ+FLOW<sup>®</sup> <u>压力</u>仪表设计适用于干燥、清洁的无腐蚀性气体 使用 IQ+FLOW<sup>®</sup> 时,请勿使用其他类型气体。

如有任何产品相关疑问,或认为产品不符合指定规格,请立即联系我司。无论因何原因联系我司,请务必备妥 产品序列号,以便我司快速有效为您提供帮助。根据序列号(SN),我司可快速了解原采购订单信息。

联系人相关信息,参见服务部分。

# 2.2 检查额定压力



Bronkhorst<sup>®</sup> 仪器的测试压力至少为规定操作压力的 1.5 倍,外向氦检漏漏率至少为  $2*10^{-9}$  mbar l/s 。



CE X

• 设备红色标签已标明测试压力;若标签缺失或测试压力不足,不得使用本设备,应安排返厂维修。

IQ+FLOW

IQ+FLOW

- 安装前, 务必确保额定压力未超出正常工艺条件范围, 且测试压力符合应用场景安全系数。
- 设备流体系统相关部件拆卸和/或更换很可能导致测试压力和泄漏测试规范无效。

# 2.3 检查管道



务必确保液体流量清洁,确保测量过程可靠。务必安装过滤器,确保 气流清洁、干燥且不含油污。推荐孔径: 7 μm。如可能发生回流,建 议安装下游过滤器。注:安装过滤器可能导致压降。



# 2.4 安装系统

IQ+FLOW®优选竖直安装。在上行或下行流动位置使用 IQ+flow®<u>气体流量仪表</u>时,建议首次使用前,进行零点校准。请勿将设备安装在机械振动和/或热源附近。仪器外壳防护等级为 IP40,意味着仪器适用于室内(干燥)应用场景,如实验室和机壳。



根据仪器底座的流向箭头方向,在线路中安装 IQ+FLOW®仪器。请根据接头供应商要求操作(如适用)。也可根据特定要求,提供特殊类型接头。



#### 压缩式配件

进行压缩式接头的密封安装时,确保卡套管顶在接头本体肩部,且卡套管、套圈或配件没有任何污 垢或灰尘。用手拧紧螺母;然后握住仪器,将螺母再多拧1圈。

#### 10-32 UNF 配件

按照配件供应商说明, 拧紧 10-32 UNF 配件。

仅可采用 1/16 英寸,切口笔直、干净、无毛刺的管道,确保密封性。安 装前,最好先行去除管道毛刺。由于适配器尺寸不同,所有新适配器均 须重新进行卡套连接,确保密封性与最小死容积。



# 安装下端式仪表

对于下端式仪器,确保密封件位于底部,表面完好无损,干燥且无污垢或灰尘。

#### 2.5 泄漏检查



#### 泄漏检查

进行任何修改后,施加流体压力前,检查系统是否存在泄露情形,尤其是使用危险介质(如:有毒或易燃介质)时,更应进行相应检查。

# 2.6 电气连接



电气连接须根据 IQ+FLOW<sup>®</sup>连接图,采用标准电缆连接。连接示例以及标准电缆参见**第3节**。 IQ+FLOW<sup>®</sup>采用+15V-+24V 直流电源供电。



为符合各项适用指南与法规,电气连接须由合格电工进行,或在其监督下进行。



- · 本文档所述设备含有易受*静电损坏*的电子元件。
- · 操作电气设备时,须采取适当措施,避免静电损坏情形发生。



CE 标识表明该设备符合欧盟相关规定,包括 电磁兼容性 (EMC)。

只有应用适当的电缆和连接器或压盖组件才能保证EMC:

- 电缆直径须足以承载电源电流, 电压损耗越小越好。
- · 产品连接其他设备时,应确保屏蔽完整性不受影响;如有可能和/或需要,可采用屏蔽电缆和连接器。
- · 电气(信号)连接最好选用我司电缆(如适用)与组件。电缆满足屏蔽要求,具有所需电缆直径,并标记了松散末端(如适用),以便于正确连接。

若未满足适当屏蔽的所有要求(例如,组件未配备屏蔽连接器),请采取以下措施,确保最佳屏蔽:

- · 尽量减少电缆长度。
- · 电缆应尽可能靠近金属结构或组件布线。
- · 确保全部电气组件接地。

如有任何电缆和/或电气连接屏蔽性相关疑问,请联系 Bronkhorst 代表。

| 1 | Bronkhorst <sup>®</sup> |
|---|-------------------------|
|   |                         |

# 2.7 模拟/数字操作



# 模拟操作(仅限单通道版本)

模拟操作请参考"IQ+FLOW®连接图",或采用RJ-45 松端电缆(7.03.419) 连接所需信号。





#### 数字 RS232 操作

完成以下设置后,可以通过 RS 232 进行数字操作。通过 RS232 电缆或 USB-RS232 转换器连接计算机后,可(免费)使用 Windows 系统 Bronkhorst®软件(如 Flow DDE 和 Flow Plot)进行操作。另请参见**第 3.4 节**。





#### RS485 数字操作

通过 RS485 进行数字操作,可建立多台仪器的总线系统。可能的系统参见第 3.5 节。

# 2.8 多功能开关操作



# 按钮操作(仅限单通道版本)

通过仪器上的按钮,可监控和启动多种仪器功能。绿色指示灯用于状态指示。红色指示灯用于反馈错误/警告/消息。可通过按钮启动多项操作,如自动校零、恢复出厂设置和总线初始化操作(如适用)。更多详细信息,参见下述具体校零步骤和第3.3节。





# 旋转开关操作(仅限多通道版本)

通过"通信类型"开关,选择通信类型和波特率。 通过"MSD"和"LSD" 开关,选择节点地址(例如,MSD=1 和LSD=9 为通道1选择节点19, 与此同时,通道2 和3 选择节点20 和21)。更多详细信息**参见第3.3 节**。

# 2.9 吹扫



电气连接完成前,不得加压。系统加压时,应注意避免系统压力冲击,并逐渐增加压力。降低压力 时,也应缓慢进行(如需)。



若系统需使用腐蚀性或反应性流体,使用前,请用干燥惰性气体(如氮气或氩气)吹扫流体系统, 吹扫时间不少于30分钟。使用腐蚀性或反应性介质(如有毒或易燃)后,须先进行彻底吹扫,随 后方可让系统暴露在空气之中。



为获得最佳精度,开始液体流量测量和/或控制前,IQ+FLOW®预热至少 30 分钟,确保仪器稳定运行。这可在有或没有气体流动的情况下进行。

# 2.10 校零



流量计/控制器出厂前已完成校零操作。也可通过RS232 或按钮重新调整仪器零点(如需)。按钮校零步骤(压力计/控制器不适用):

- · 根据工艺条件,进行仪器预热、系统加压和注入流体。
- · 关闭仪器附近阀门,确保无任何流体流过仪器。
- · 设定值必须为零。
- · 长按按钮。短时间后,红色指示灯亮起,熄灭,然后绿色指示灯亮起。松开按钮。
- · 校零程序开始,绿色 LED 指示灯快速闪烁。等待校零程序信号稳定,保存新零点。若信号不稳定,校零所需时间相对较长,取最接近零点的数值为新零点。该过程需要约10 秒钟。
- · 当信号指示灯显示 0%, 且绿色指示灯再次持续发光时, 校零操作已完成。

# 2.11 校准

IQ+FLOW<sup>®</sup> 仪器出厂前已完成校准。Bronkhorst 承诺,旗下各种仪器均达到额定精度。且仪器已根据可追溯至荷兰国家计量院(VSL)的测量标准进行校准。校准证书随货物一同交付。正确操作情况下(清洁气体、无压力冲击、无振动、无热冲击等),无需定期维护。但根据用户特定需求,也可进行定期检查、重新校准或精度验证。

# 2.12 供应压力



为确保流体系统控制及安全,建议在施加流体压力前打开电源,流体系统减压后关闭电源。



加压时,注意避免压力冲击,应逐渐增加流体系统压力,达到所需操作压力。

# 2.13 型号钥匙

# 2.13.1 型号 IQF / IQP



# 2.13.2 型号 IQM



<sup>\*</sup>仪器各通道序列号后会有一个额外的字母(例如 M#######AA)。

# 3 基本操作

#### 3.1 一般规定

IQ+FLOW®仪器须根据随仪器交付的适用连接图连接,并采用+15-+24V直流电源供电。仪器可按照以下方式操作:

- 模拟接口: 0 5Vdc; 0 10 Vdc; 0 20 mA 或 4 20 mA (仅限单通道版本)
- 数字 RS232 接口 (FLOW-BUS (Propar) 协议)
- 数字 RS485 接口(Modbus RTU、Modbus ASCII 或 FLOW-BUS 协议)

默认情况下,仪器按照要求进行设置。单通道和多通道版本可支持的接口如下表所示。

|                        | 模拟接口(第 3.2<br>节)                                          | 数字 RS232 接口(第 3.4 节)                                                 | RS485 数字接口(第 3.5 节)                                                                                                    |
|------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| IQF/IQP<br>( 单 通<br>道) | 0 - 5 Vdc; 0 - 10<br>Vdc;<br>0 - 20mA; 4 - 20mA<br>(软件可选) | FLOW-BUS(Propar)协议为 9600、<br>19200、38400、57600 或 115200 波特<br>(软件可选) | Modbus RTU 和 Modbus ASCII 协议为<br>9600、19200、38400、56000、57600<br>或 115200 波特; FLOW-BUS 协议为<br>187500 或 400000 波特(软件可选) |
| IQM (多<br>通道)          | 不支持                                                       | FLOW-BUS(Propar)协议为 38400<br>或 115200 波特(使用旋转开关选择)                   | Modbus RTU 协议为 9600、19200 或 38400 波特(使用旋转开关选择)                                                                         |

## 3.2 模拟操作

模拟操作仅适用于单通道 IQ+FLOW®仪器。多通道仪器只能进行数字操作。模拟操作时,以下信号可用:

- 引脚 2 测量值(模拟输出)
- 引脚 3 设定点(模拟输入/设定点)

IQ+FLOW®阀输出不再作为模拟信号提供。所选模拟接口(0 - 5Vdc; 0 - 10Vdc; 0 - 20 mA 或 4 - 20 mA)可通过仪器型号进行确定。参见**第 2.13 节**。



通过模拟接口操作仪器时,可将仪器同时连接 RS232,读取/更改相应参数(如:设置或流体选择)。

#### 连接

模拟操作可通过 RJ-45 松端电缆或连接 9 针 sub-D 转换器的 RJ45 电缆,连接所需信号。





# 3.3 手动接口:按钮、LED 指示灯和旋转开关

本节介绍了手动仪表接口:

- 按钮
- LED 指示灯指示信息
- 旋转开关

# 3.3.1 按钮操作(仅限单通道版本)

通过手动操作按压式按钮,可选中/启动仪器部分重要操作。在模拟或数字操作模式下,这些选项均可用。

#### 功能如下:

- 重置警报
- 重置仪器(固件程序重置)
- 自动校零
- 恢复出厂设置(避免意外更改设置)

通过数字 RS232 或 RS485 操作,还可设置:

- 总线地址(仅 RS485 需要)
- 波特率
- 更改控制模式

在正常操作模式和仪器启动期间,可通过按钮启动的功能如下表所示:



| LED 指示灯 |     | 按键时间     | 指示信息                                                                                                                |
|---------|-----|----------|---------------------------------------------------------------------------------------------------------------------|
| 绿色■     | 红色■ |          |                                                                                                                     |
| 关闭      | 关闭  | 0-1秒     | <b>无需采取任何措施。</b> 不小心按到开关,随后马上松开,仪器不会出现任何非必要反应。<br>连按开关键 3 次,按键间隔不超过 1 秒,仪器会显示总线地址和波特率。<br>更多详细信息参见 <b>第 3.5 节</b> 。 |
| 关闭      | 关闭  | 1-4秒     | 若达到最小/最大报警或计数器批次 <b>. 重置报警器</b> (仅在键盘重置已启用情况下)                                                                      |
|         |     |          | 仅适用于 FLOW-BUS: 若节点地址已占用,通过该功能,可让 FLOW-BUS 分配一个空闲节点地址。                                                               |
| 关闭      | 点亮  | 4-8秒     | <b>重置仪器</b><br>仪器程序重新启动,所有警报与错误信息全部清除。启动时,仪器会<br>(再次)进行自检。                                                          |
| 点亮      | 关闭  | 8 - 12 秒 | 自动校零<br>将重新调整仪表,测量零流量(压力计/控制器不适用)。参见 <b>第 2.10</b><br>节。                                                            |
| 点亮      | 点亮  | 12 - 16秒 | 准备进入仪器 <b>点亮模式</b> ,进行固件更新。仪器关闭,两个 LED 指示灯<br>熄灭<br>下次启动时,再次激活仪器。                                                   |

仪器正常操作模式下,长按按钮后的LED 指示灯指示信息

| LED 指示灯 按键                |                           | 按键时间      | 指示信息                                                                                                                                  |
|---------------------------|---------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|
| 绿色■                       | 红色■                       |           |                                                                                                                                       |
| 关闭                        | 关闭                        | 0-4秒      | <b>无需采取任何措施。</b> 不小心按到开关,随后马上松开,仪器不会出现<br>任何非必要反应。                                                                                    |
| 关闭                        | 正常点亮<br>点亮0.2秒,<br>熄灭0.2秒 | 4-8秒      | <b>恢复出厂设置</b><br>所有参数设置(现场总线设置除外)均会恢复为 Bronkhorst®生产交付<br>测试时系统备份的参数值。                                                                |
| 正常点亮<br>点亮0.2秒,<br>熄灭0.2秒 | 点亮                        | 8 - 12 秒  | 仅适用于 FLOW-BUS: 让 FLOW-BUS 分配一个空闲节点地址。                                                                                                 |
| 正常点亮<br>点亮0.2秒,<br>熄灭0.2秒 | 正常点亮<br>点亮0.2秒,<br>熄灭0.2秒 | 12 - 16 秒 | <b>激活"配置模式"</b> 。波特率和总线类型设置为 38k4 和 RS 232 FLOW-BUS (Propar)。"配置模式"可通过绿色 LED 指示灯的闪烁模式进行识别(点亮 2 秒,熄灭 0.1 秒)。仅当再次进行该按钮操作时,"配置模式" 才会被禁用。 |

仪器正常启动情况下,长按按钮后的LED 指示灯指示信息

# 更改控制模式

可通过以下几种模式,在数字仪表或控制器不同功能间切换。可用控制模式更多信息,请参见参数"控制模式"。正常运行/操作模式下,连按开关键 4 次,按键间隔不超过 1 秒,仪器"更改"控制模式。

|    | 更改当前控制模式(快速按开关键 4 次)      |                                                                                       |             |                                                                                                             |  |  |
|----|---------------------------|---------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 步骤 | 操作                        | 指示信息                                                                                  | 时间          | 操作                                                                                                          |  |  |
| 1  | 设置设定值/控制<br>模式编号的十位<br>数字 | 亮 点亮 0.1 秒 熄灭<br>0.1 秒                                                                | 超时: 60<br>秒 | 需绿色 LED 指示灯点亮次数。<br>达到所需点亮次数后,松开开关键。                                                                        |  |  |
|    |                           | 按住开关键,计数闪<br>烁开始:<br>点亮 0.5 秒<br>熄灭 0.5 秒                                             |             | 最大计数为 2, 到达最大计数后, 从 0 开始重新计数。<br>计数失败后, 长按开关键, 重新开始计数                                                       |  |  |
| 2  | 设置设定值/控制模式编号的个位数字         | ■ 红色 LED 指示灯<br>点亮 点亮 0.1 秒<br>熄灭 0.1 秒<br>按住开关键, 计数闪<br>烁开始:<br>点亮 0.5 秒<br>熄灭 0.5 秒 | 超时: 60<br>秒 | 按住开关键,数出设置控制模式编号个位数字所需红色 LED 指示灯点亮次数。<br>达到所需点亮次数后,松开开关键。<br>最大计数为 9,到达最大计数后,从 0 开始重新计数。计数失败后,长按开关键,重新开始计数。 |  |  |

仪器返回正常运行/操作模式。

若未超出超时时间, 更改有效。

仪器启动相关行为,参见"控制模式"参数。



熄灭0.1 秒 (熄灭0.5 秒 + 熄灭0.5 秒)表示值0。 如需将值设置为0,短按开关,1 秒内再次松开。



每次闪光计数前,计数用的LED 指示灯会快速闪烁。

(模式:点亮0.1 秒,熄灭0.1 秒)。按下开关后,该LED 指示灯(或两个LED 指示灯)熄灭,开始计数序列。

# 3.3.2 LED 指示灯功能

部分选项可通过仪器顶部的 LED 指示灯来手动操作。绿色 LED 指示灯显示仪器当前的活动模式。红色 LED 指示灯显示错误/警报情况。



更多详细信息,参见数字仪器操作手册(文件号: 9.17.023)"手动接口: 按钮和 LED 指示灯"一章

# 3.3.3 旋转开关操作(仅限多通道版本)

IQ+FLOW®多通道仪器配备了可用于选择通信类型、波特率和节点地址的旋转开关。

#### 通信型开关

通过"通信类型"开关,可选择以下通信类型:

- 0. RS485 9k6: Modbus RTU 协议,波特率为 9600,奇偶校验为偶数
- 1. RS485 19k2: Modbus RTU 协议,波特率为 19200,奇偶校验为偶数
- 2. RS485 38k4: Modbus RTU 协议,波特率为 38400,奇偶校验为偶数
- 3. RS232 38k4: FLOW-BUS 协议,波特率为 38400
- 4. RS232 115k2: FLOW-BUS 协议,波特率为 115200



# 节点地址开关

通过两个"节点地址"开关,可为仪器通道选择节点地址。"MSD"(最高有效数字)设置第一个数字(十位),"LSD"(最低有效数字)设置第二个数字(个位)。通道 1 的节点地址可通过开关进行设置,通道 2 和 3 的地址分别为收到的"节点地址"+1 和"节点地址"+2 (例如,通道 MSD=1 和 LSD=9 为通道 1 选择节点 19,则通道 2 和 3 节点地址为节点 20 和 21)。

## 3.4 基本 RS232 操作

通过数字操作,仪器可新增很多其他功能(与模拟操作相比),例如:

- 最多八种可选流体(如己安装)
- 在读数/控制模块或计算机主机直接读取
- 测试和自检
- 标识(序列号、型号、设备类型、用户标签)
- 可调的最小和最大报警阈值
- (批) 计数器

#### 3.4.1 连接

将 IQ+FLOW®仪器连接到电脑的 COM 端口,需采用特殊电缆(7.03.426)进行连接,该电缆会改变相应的引脚配置。也可采用 RS 232-USB 2.0 转换器(9.09.122)连接 USB 端口。通过分股电缆(Y型适配器 7.03.241)和插入式电源(7.03.424)为仪器供电。

除 COM 或 USB 端口外,还可使用松端电缆(7.03.419) 手动连接 RS 232 引脚进行连接,通常用于连接 PLC 或 微控制器设备。



# 3.4.2 动态数据交换 (DDE)

通过 Bronkhorst®FLowDDE 服务器应用程序,可使用 RS232 通信进行仪器操作。通过动态数据交换(DDE),用户可实现微软 Windows 应用程序间基本的进程间通信。FlowDDE 是一个 DDE 服务器应用程序。与自有或第三方 SCADA 程序的客户端应用程序结合后,可在流量控制器和 Windows 应用程序间建立一种简单的数据交换方式。例如可将 Microsoft Excel 电子表格单元格链接 IQ+FLOW®测量值,且测量值如有更改,Excel 电子表格就会自动更新单元格内容。

## **3.4.3 FlowDDE**

FLowDDE 服务器还提供了很多测试工具和用户可调设置,以便与连接的流量/压力计或控制器进行有效通信。通过 FlowDDE 设置 DDE 链路方法相关的更多信息参见 FlowDDE 应用程序帮助文档。可进行应用程序开发的编程软件示例: Visual Basic、LabView 和 Microsoft Excel。



|  | Bronkhor |
|--|----------|

## 3.4.4 软件

Bronkhorst<sup>®</sup>免费 DDE 客户端应用程序示例: FlowPlot 和 FlowView。其他支持 DDE 的软件程序有: MS-Office、LabVIEW、InTouch 和 Wizcon。





Bronkhorst®软件应用程序"FlowView"(左)和"FlowPlot"(右)



FlowDDE 以及 Bronkhorst<sup>®</sup>其他应用可从支持服务 CD 获取,也可直接从 Bronkhorst 网站产品页面(www.bronkhorst.com/products)下载

#### 3.4.5 FlowDDE 参数号

FlowDDE 为用户提供了一个全新的,用户友好型的参数值读取/修改界面。DDE 参数号是特殊 FlowDDE 仪器/参数数据库中的唯一编号,与仪器进程参数号不同。FlowDDE 会将节点地址和进程号转换为通道号。

通过应用程序名称更改仪器参数: "FlowDDE"只需:

- 主题,用于频道号: "C(X)"
- 项目,用于参数编号: "P(Y)"

#### 3.4.6 波特率设置

确保仪器与正在通信的应用程序的波特率保持一致。单通道仪器可选波特率为 9K6、19k2、38k4、57k6 和 115k2 波特;多通道仪器可选波特率为 38k4 和 115k2 波特。



通过RS232 接口进行通信的更多详细信息,参见RS232 手册(文档号: 9.17.027)

#### 3.5 RS485 基本操作

本节仅介绍了 IQ+FLOW®仪器与主设备之间的接口。在 Modbus 系统中,IQ+FLOW®仪器始终以从机身份运行。 从机仅与主机进行通信,不与其他 Modbus 从机进行通信。例如,主设备可以为计算机。

| Bronkhorst <sup>®</sup> |  |
|-------------------------|--|
|-------------------------|--|



Modbus 相关更多详细信息,请访问 www.modbus.org ,或访问用户所在国(当地)Modbus 组织相应网站(如有)。

# 3.5.1 连接

RS 485 总线系统 IQ+FLOW®仪器示例如图所示。若功耗超过 15W,则需使用两个独立电源供电,因为 PiPS 的最大功率为 15W。

# FLOW-BUS 设置



# Modbus 设置



RS232 独立设置



## 3.5.2 软件

使用计算机与 IQ+FLOW<sup>®</sup>仪器通信时,Bronkhorst<sup>®</sup>软件仅支持 FLOW-BUS 协议。通过 Modbus 进行操作时,必 须使用来自第三方的软件,如 LabVIEW、ModScan 或 Modbus PLC,作为 Modbus 主机。



注:连接RS232 配置时,设置用于RS485 FLOW-BUS 或 Modbus 通信的 IQ+FLOW® 仪器无响应。根据第 3.3.1 节所述步骤,启动时长按按钮,激活"配置模式"(如需)。波特率和总线类型设置为 38k4 和RS 232 FLOW-BUS (Propar)。多通道仪器通过旋转开关设置通信类型。

# 3.5.3 从机地址、波特率和奇偶校验设置

IQ+FLOW<sup>®</sup>仪器按照订单要求进行配置。如需更改任何特定设置,可参见下表,了解支持配置。默认选择以粗体显示。

#### 单通道版本

| 模式:    | 模拟 |              | 数字            |                                 |       |  |  |
|--------|----|--------------|---------------|---------------------------------|-------|--|--|
| 接口/介质: | -  | RS232        | RS232 RS485   |                                 |       |  |  |
| 总线协议:  | -  | Propar       | FLOW-BUS      | FLOW-BUS ModbusRTU Modbus ASCII |       |  |  |
| 波特率:   | -  | 9600         | 187500        | 9600                            | 9600  |  |  |
|        |    | 19200        | 400000        | 19200                           | 19200 |  |  |
|        |    | 38400        |               | 38400 38400                     |       |  |  |
|        |    | 57600        | 56000 56000   |                                 | 56000 |  |  |
|        |    | 115200       | 57600 57600   |                                 | 57600 |  |  |
|        |    |              | 115200 115200 |                                 |       |  |  |
| 节点地址:  | -  | <b>3</b> 125 | 3125          | 1247                            | 1247  |  |  |
| 奇偶校验:  | -  | 无*           | 无*            |                                 |       |  |  |

如需修改 IQ+FLOW®仪器的波特率或节点地址,可通过按钮或通过修改"配置模式"设置进行。其他参数只能在"配置模式"下进行修改。通过按钮修改上述参数更多详细信息,参见第 4.2.5 节。通过"配置模式"修改这些设置时,应按照**第 3.3.1 节**相关说明,启动时长按按钮,激活"配置模式"。在"配置模式"下,将波特率和总线类型设置为 38k4 和 RS 232 FLOW-BUS(Propar)。如**第 4.2.5 节**所述,修改适当参数。然后,使用相同程序停用"配置模式"。按所需配置完成波特率、节点地址或奇偶校验调整后,仪器已就绪,随时可使用。

#### 多通道版本(选择旋转开关)

| 模式:    | 数字                |           |  |
|--------|-------------------|-----------|--|
| 接口/介质: | RS232             | RS485     |  |
| 总线协议:  | Propar            | ModbusRTU |  |
| 波特率:   | <b>38400</b> 9600 |           |  |
|        | 115200            | 19200     |  |
|        |                   | 38400     |  |
| 节点地址:  | 399               | 199       |  |
| 奇偶校验:  | 无*                | 偶校验       |  |

不可选择。

# 3.6 基本参数和属性

# 3.6.1 引言

仪器大部分参数只能通过数字通信访问。通信协议不同,可访问的仪器参数也存在一定差异。使用 Bronkhorst® 软件程序 FlowView 或 FlowPlot 时,在菜单界面,可非常方便地访问常用参数。使用其他通信方法时,支持通信协议的寻址方法可访问的基本参数如下表所示:

| 类型   | 访问    | 范围     | FlowDDE | FLOW-BUS    | Modbus    |
|------|-------|--------|---------|-------------|-----------|
| [类型] | R/W P | [x][y] | [FB]    | [Pro]/[Par] | [地址]/[索引] |

# 类型

无符号字符型 1字节字符

无符号字符型[x] x字节数组(字符串)

无符号整型 2字节无符号整型

无符号长整型 4字节无符号长型

浮点型 4字节浮点型

访问

读 该参数为只读参数 R/W 参数可读取也可写入

R/W & 该参数受保护,仅当"初始化重置"参数设置为64时,才可写入该参数。更多详细

信息参见第 4.1.1 节。

## 范围

部分参数仅接受特定范围的值:

 [x]
 范围最小值。

 [y]
 范围最大值。

#### **FlowDDE**

FlowDDE 参数号。FlowDDE 相关更多信息,参见第3.4节。

#### **FLOW-BUS**

在 FLOW-BUS 协议(使用 RS232 时为 Propar)中,参数分为"进程"号和"参数"号两部分。使用 FLOW-BUS/Propar 协议寻址参数时,请写入两个数字:

 [Pro]
 进程编号

 [Par]
 参数号



更多详细信息,参见 RS232 手册 (文档号: 9.17.027)

# Modbus

指定 PDU 地址或寄存器号后,可通过 Modbus 协议对各种参数进行读取或写入。

PDU 地址是一个十六进制的数字(可通过"0x"前缀识别),相当于十进制寄存器号减 1,例如 PDU 地址 0x0000 对应寄存器号 1,PDU 地址 0x0000A 对应寄存器号 11等):

【地址】

十六进制 PDU 地址

[索引]

十进制寄存器号

对于 Modbus 协议,每两个字节单独寻址。

# 3.6.2 基本测量和控制参数

仪器数字通信的常用基本参数如下表所示。



操作参数相关更多信息,参见数字仪器操作手册(文档号: 9.17.023)

# 测量值(测量)

| 类型    | 访问 | 范围     | FlowDDE | FLOW-BUS | Modbus    |
|-------|----|--------|---------|----------|-----------|
| 无符号整型 | 读  | 041942 | 8       | 1/0      | 0x0020/33 |

<sup>&</sup>quot;测量值"表示仪器测得的质量流量或压力数值。信号强度为 0-100%,数值范围:0-32000。测量时最大输出值为 131.07%,即:41942。测量值浮点型变量,即"F值测度"也可用于设置仪器容量和容量单位,参见**第 4 节**。

# 设定值

| 类型    | 访问  | 范围      | FlowDDE | FLOW-BUS | Modbus    |
|-------|-----|---------|---------|----------|-----------|
| 无符号整型 | R/W | 0.32000 | 9       | 1/1      | 0x0021/34 |

<sup>&</sup>quot;设定点"用于设置控制器所需的质量流量或压力。信号和测量值的取值范围相同,但设定值限制在 0 - 100%之间(0-32000)。设定点浮点型变量,即"F值设定值"也可用于设置仪器容量和容量单位,参见第 4 节。

# 3.6.3 基本标识参数

#### 用户标记

| 类型         | 访问  | 范围 | FlowDDE | FLOW-BUS | Modbus                 |
|------------|-----|----|---------|----------|------------------------|
| 无符号字符型[16] | R/W | -  | 115     | 113/6    | 0xF1300xF136/617456175 |

通过"用户标签"参数,可为仪器添加一个自定义标记名称,名称最多不超过16个字符。

#### 客户型号

| 类型         | 访问  | 范围 | FlowDDE | FLOW-BUS | Modbus                 |
|------------|-----|----|---------|----------|------------------------|
| 无符号字符型[16] | R/W | -  | 93      | 113/4    | 0xF1200xF127/617296173 |

该参数用于添加其他型号编号相关信息,例如客户特定型号。

#### 系列号

| 类型         | 访问 | 范围 | FlowDDE | FLOW-BUS | Modbus                      |
|------------|----|----|---------|----------|-----------------------------|
| 无符号字符型[20] | 读  | -  | 92      | 113/3    | 0xF1180xF11F/617216172<br>8 |

该参数由一个不超过 20 字节的字符串组成,其中也包括了参数识别所需的仪器序列号,例如: "M1111111 A"。

# BHT 型号

| 类型         | 访问 | 范围 | FlowDDE | FLOW-BUS | Modbus                  |
|------------|----|----|---------|----------|-------------------------|
| 无符号字符型[23] | 读  | -  | 91      | 113/2    | 0xF1100xF116/6171261718 |

该参数显示 Bronkhorst®仪器的型号类型信息。

# 4 高级操作

# 4.1 读取和更改仪器参数

# 4.1.1 特殊参数



本章所述所有参数都会影响 $IQ+FLOW^*$ 效用。注:若设置错误,很可能扰乱输出。为避免不小心更改,部分参数设置为锁定状态(由符号P显示)。如需解锁这些参数,请将"初始化重置" 参数设置为"解锁"。

# 初始化重置

| 类型     | 访问  | 范围    | FlowDDE | FLOW-BUS | Modbus    |
|--------|-----|-------|---------|----------|-----------|
| 无符号字符型 | R/W | 82/64 | 7       | 0/10     | 0x000A/11 |

<sup>&</sup>quot;初始化重置"参数用于解锁需执行写操作的高级参数。 可以将此参数设置为下列值:

| 值  | 模式  | 仪表操作        |
|----|-----|-------------|
| 82 | 锁定  | 高级参数为只读参数   |
| 64 | 己解锁 | 高级参数可读取也可写入 |

仪器启动后,该参数始终设置为"锁定"状态。

# 控制方式

| 类型    | 访问  | 范围   | FlowDDE | FLOW-BUS | Modbus    |
|-------|-----|------|---------|----------|-----------|
| 无符号整型 | R/W | 0255 | 12      | 1/4      | 0x0024/37 |

<sup>&</sup>quot;控制模式"用于选择仪器不同功能。可使用以下模式:

| 值  | 模式                | 仪表操作                                | 设定值源                               | 主源                      | 从因子      |
|----|-------------------|-------------------------------------|------------------------------------|-------------------------|----------|
| 0  | 总线/RS232          | 控制                                  | RS232/RS485                        |                         |          |
| 1  | 模拟输入              | 控制                                  | 模拟输入                               |                         |          |
| 2  | FLOW-BUS 从机       | 通过总线其他仪器,以从机身份进行控制                  | FLOW-BUS *<br>从因子/ 100%            | FLOW-B<br>US            | 从因子      |
| 3  | 阀关闭               | 闭阀                                  |                                    |                         |          |
| 4  | 控制器空转             | 总线/RS232 待机,控制停止; 阀关闭冻结在<br>当前位置    |                                    |                         |          |
| 5  | 测试模式              | 测试模式已启用 (仅出厂)                       |                                    |                         |          |
| 6  | 调谐模式              | 调谐已启用(仅出厂)                          |                                    |                         |          |
| 7  | 设定值 100%          | 设定值控制在 100%                         | 固定 100%                            |                         |          |
| 8  | 阀门全开              | 阀全开                                 |                                    |                         |          |
| 9  | 校准模式              | 校准模式已启用(仅出厂)                        |                                    |                         |          |
| 10 | 模拟从机              | 通过模拟输入其他仪器,以从机身份进行控制                | 模拟输入*从因<br>子/100%                  | 模拟输入                    | 从因子      |
| 12 | 设定值 0%            | 设定值控制在 0%                           | 固定 0%                              |                         |          |
| 13 | FLOW-BUS 模拟<br>从机 | 通过总线其他仪器,以从机身份进行控制,<br>通过模拟输入,设定从因子 | FLOW-BUS *<br>模拟输入* 从因<br>子 / 100% | FLOW-B<br>US * 模<br>拟输入 | 模拟<br>输入 |
| 18 | RS232             | 控制                                  | RS232                              |                         |          |

| 值  | 模式     | 仪表操作                      | 设定值源 | 主源 | 从因子 |
|----|--------|---------------------------|------|----|-----|
| 20 | 阀门转向   | 控制器空转情况下,设定值重定向为阀门关闭      |      |    |     |
| 21 | 模拟阀门转向 | 控制器空转情况下,模拟输入重定向为阀门<br>关闭 |      |    |     |
| 22 | 阀安全状态  |                           |      |    |     |

仪器启动后,控制模式设置为"模拟输入"或"BUS/RS232",具体取决于客户模拟或数字操作默认设置。除非实际控制模式不为 0、1、9 或 18,否则实际控制模式设置保持不变。更多相关信息,参见**第 4.2.2 节**"lO 状态"参数。



双接口操作或从因子相关更多信息,参见数字仪器操作手册(文档号: 9.17.023)

# 4.1.2 流体信息

以下参数给出仪器流体范围信息。

#### 流体编号

| 类型     | 访问  | 范围 | FlowDDE | FLOW-BUS | Modbus    |
|--------|-----|----|---------|----------|-----------|
| 无符号字符型 | R/W | 07 | 24      | 1/16     | 0x0030/49 |

"流体编号"是一个指向校准参数集的指针。每种可选流体都代表一组校准参数值。参数值 0=流体 1,参数值 7=流体 8。每台仪器最多可储存 8 种流体。默认值=0(流体 1)。

#### 流体名称

| 类型         | 访问    | 范围 | FlowDDE | FLOW-BUS | Modbus                  |
|------------|-------|----|---------|----------|-------------------------|
| 无符号字符型[10] | R/W P | -  | 25      | 1/17     | 0x81880x818C/3316133165 |

该参数包含所选流体号对应的名称,例如"空气"。

#### 产能单位

| 类型        | 访问    | 范围 | FlowDDE | FLOW-BUS | Modbus                |    |       |
|-----------|-------|----|---------|----------|-----------------------|----|-------|
| 无符号字符型[7] | R/W P | -  | 129     | 1/31     | 0x81<br>FB/3327333276 | F8 | .0x81 |

<sup>&</sup>quot;流体单位"可通过"容量单位"参数读取。该参数包含最多7个字符的单位。

#### 流体容量(@100%)

| 类型  | 访问    | 范围               | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-------|------------------|---------|----------|-------------------------|
| 浮点型 | R/W 🔑 | ±1E-10<br>±1E+10 | 21      | 1/13     | 0x81680x8169/3312933130 |

容量是传感器读出单元100%时直接读取的最大值。

#### 流体容量(@0%)

| 类型  | 访问    | 范围               | FlowDDE | FLOW-BUS | Modbus                      |
|-----|-------|------------------|---------|----------|-----------------------------|
| 浮点型 | R/W & | ±1E-10±1<br>E+10 | 183     | 33/22    | 0xA1B00xA1B1/4139341<br>394 |

这是读出单元直接读取的容量零点。



"容量单位索引"或"容量单位"参数调用相关信息,参见数字仪器操作手册(文档号: 9.17.023)

| Bronkhors | ۰ |
|-----------|---|

# 4.1.3 高级测量和控制参数

#### 测量值(F值测度)

| 类型  | 访问 | 范围                  | FlowDDE | FLOW-BUS | Modbus                  |
|-----|----|---------------------|---------|----------|-------------------------|
| 浮点型 | R  | -3.4E+383<br>.4E+38 | 205     | 33/0     | 0xA1000xA101/4121741218 |

<sup>&</sup>quot;测量值"浮点型变量。"F值测度"变量显示已完成仪器校准的容量与容量单位的测量值。"F值测度"参数取决于 "容量"、"容量单位"、"传感器类型"和"容量 0%"。

#### 设定点(F值测量值)

| 类型  | 访问  | 范围       | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-----|----------|---------|----------|-------------------------|
| 浮点型 | R/W | 03.4E+38 | 206     | 33/1     | 0xA1180xA119/4124041241 |

<sup>&</sup>quot;设定点"的浮点型变量。"F 值设定值"变量显示已完成仪器校准的容量与容量单位的设定值。"F 值测量值"参数取决于"容量"、"容量单位"、"传感器类型"和"容量 0%"。

#### 阀输出

| 类型     | 访问  | 范围            | FlowDDE | FLOW-BUS | Modbus                      |
|--------|-----|---------------|---------|----------|-----------------------------|
| 无符号长整型 | R/W | 0<br>16777215 | 55      | 114/1    | 0xF2080x<br>F209/6196161962 |

该参数为控制器发出的信号,用于驱动阀门。0-16777215对应约0-60 mAdc。

# 4.1.4 控制器参数

微控制器处理的阀控制算法由几个参数组成,这些参数可通过总线进行设置。尽管可访问很多参数,但 Bronkhorst 建议不要修改这些参数,因为生产期间控制器已设置了最佳值。如需修改控制器设置,则须由经过相应培训的服务人员或在该等服务人员的监督下进行。

数字仪器基本控制器图如下所示。该仪器由一个标准 PID 控制器和很多个插件组成。一般来说,如果需要加快或减慢控制器响应速度,应修改控制器速度(K 速度)或 PID-Kp。



# Kp (PID-Kp)

| 类型  | 访问    | 范围      | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-------|---------|---------|----------|-------------------------|
| 浮点型 | R/W P | 0.1E+10 | 167     | 114/21   | 0xF2A80xF2A9/6212162122 |

| Bronkhorst | <b>⊗</b> |
|------------|----------|
|            |          |

PID 控制器比例动作和放大系数。

#### 控制器速度(K速度)

| 类型  | 访问   | 范围       | FlowDDE | FLOW-BUS | Modbus                  |
|-----|------|----------|---------|----------|-------------------------|
| 浮点型 | R/WP | 03.4E+38 | 254     | 114/30   | 0xF2F00xF2F1/6219362194 |

该参数为控制器速度因子。PID-Kp 乘以该因子。

#### Ti (PID-Ti)

| 类型  | 访问    | 范围     | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-------|--------|---------|----------|-------------------------|
| 浮点型 | R/W P | 01E+10 | 168     | 114/22   | 0xF2B00xF2B1/6212962130 |

PID 控制器几秒钟内完成积分操作。此值不能更改。

#### Td (PID-Td)

| 类型  | 访问    | 范围     | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-------|--------|---------|----------|-------------------------|
| 浮点型 | R/W P | 01E+10 | 169     | 114/23   | 0xF2B80xF2B9/6213762138 |

PID 控制器几秒钟内完成差分操作。默认值为 0.0。此值不能更改。

#### 从零到打开的控制响应时间(K打开)

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus      |
|--------|-------|------|---------|----------|-------------|
| 无符号字符型 | R/W P | 0255 | 165     | 114/18   | 0x0E52/3667 |

从 0%启动时的控制器响应(阀打开时)。值 128 为默认值,表示:不调整。否则,按照如下公式调整控制器速度:

新响应 = 旧响应-1.05 (128-k 速度)

#### 正常阶跃响应(K正常)

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus      |
|--------|-------|------|---------|----------|-------------|
| 无符号字符型 | R/W & | 0255 | 72      | 114/5    | 0x0E45/3654 |

正常控制期间的控制器响应(设定点步进)。值 128 为默认值,表示:不调整。否则,按照如下公式调整控制器速度:

新响应= 旧响应- 1.05 (128-K 正常)

# 稳定状态控制响应(K稳定)

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus      |
|--------|-------|------|---------|----------|-------------|
| 无符号字符型 | R/W P | 0255 | 141     | 114/17   | 0x0E51/3666 |

控制器稳定时的控制器响应(设定值 2%范围内)。值 128 为默认值,表示:不调整。否则,按照如下公式调整 控制器速度:

新响应= 旧响应- 1.05 (128-k 稳定)

# 4.1.5 显示筛选程序

对 IQ+FLOW®仪器输出信号(测量值)进行滤波处理。该滤波器可动态变化: 当检测到传感器信号变化时,测量值滤波程度会低于传感器信号恒定且稳定时。有两个滤波常数: 静态显示因子和动态显示因子。通过以下公式,可将这两个因子转换为时间常数:

$$\tau = \text{循环时间} \cdot \frac{1 - \Box F}{\Box F}$$

\_Bronkhorst<sup>®</sup>\_\_\_\_\_

测量值采用一阶低通滤波器滤波,滤波器时间常数位于两个ô值之间。

# 动态显示因子

| 类型  | 访问  | 范围    | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-----|-------|---------|----------|-------------------------|
| 浮点型 | R/W | 0.1.0 | 56      | 117/1    | 0xF5080xF509/6272962730 |

此值不能更改。

#### 静态显示因子

| 类型  | 访问  | 范围   | FlowDDE | FLOW-BUS | Modbus                  |
|-----|-----|------|---------|----------|-------------------------|
| 浮点型 | R/W | 01.0 | 57      | 117/2    | 0xF5100xF511/6273762738 |

此值不能更改。

#### 循环时间

| 类型     | 访问 | 范围    | FlowDDE | FLOW-BUS | Modbus      |
|--------|----|-------|---------|----------|-------------|
| 无符号字符型 | R  | 0.255 | 52      | 114/12   | 0x0E4C/3661 |

注:循环时间参数的单位为 10 ms。示例:值 0.2表示 2ms

# 4.1.6 报警/状态参数



参见<u>数字仪器操作手册(文档号: 9.17.023)</u>

# 4.1.7 计数器参数



参见 数字仪器操作手册(文档号: 9.17.023)

# 4.2 仪表特殊功能

# 4.2.1 自动校零

通过数字操作开始自动校零时,应写入两个参数:

# 控制方式

| 类型     | 访问  | 范围   | FlowDDE | FLOW-BUS | Modbus    |
|--------|-----|------|---------|----------|-----------|
| 无符号字符型 | R/W | 0255 | 12      | 1/4      | 0x0024/37 |

#### 校准模式

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus      |
|--------|-------|------|---------|----------|-------------|
| 无符号字符型 | R/W P | 0255 | 58      | 115/1    | 0x0E61/3682 |

| 值   | 模式   | 仪表操作 |
|-----|------|------|
| 0   | 空闲   | 空闲   |
| 9   | 自动校零 | 自动校零 |
| 255 | 错误   | 空闲   |

#### 自动校零步骤:

步骤 1: 将"初始化重置"设置为"解锁"(值 64)

步骤 2: 将"控制模式"设置为"校准模式"(值 9)

步骤 3: 将"校准模式"设置为"自动校零"(值9)

步骤 4: 检查"校准模式",

空闲(值0)自动校零成功自动校零(值9)自动校零激活错误(值255)自动校零失败

# 4.2.2 更改默认控制模式

根据客户要求, 仪器交付时默认为模拟或数字信号。每次(通电)重置后, 仪器返回默认控制模式。可通过以下参数, 更改默认控制模式:

#### IO 状态

| 类型   |     | 访问  | 范围   | FlowDDE | FLOW-BUS | Modbus                      |
|------|-----|-----|------|---------|----------|-----------------------------|
| 无符号字 | :符型 | R/W | 0255 | 86      | 114/11   | 0xF2580xF259/620416204<br>2 |

6位[7..0]表示前一个模拟跳线。

- 1=默认控制模式为模拟
- 0=默认控制模式为数字

将默认数字操作更改为默认模拟操作的步骤:

- 读取"IO 状态"
- 读取值加 64
- 写入"IO 状态"

将默认模拟操作更改为默认数字操作的步骤:

- 读取"IO 状态"
- 读取值减去 64
- 写入"IO 状态"



也可通过按钮改变控制模式

# 4.2.3 禁用按钮(仅限单通道版本)

可禁用仪器顶部按钮。这样,可以避免因非必要触碰导致的重大影响。可使用以下参数,禁用按钮:

#### IO 状态

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus                  |
|--------|-------|------|---------|----------|-------------------------|
| 无符号字符型 | R/W P | 0255 | 86      | 114/11   | 0xF2580xF259/6204162042 |

3位[7..0]表示禁用按钮。

0 =禁用按钮

1 =启用按钮

按钮启用步骤:

- 读取"lO 状态"
- 读取值加 8

(OR[0x08])

写入"IO 状态"

按钮禁用程序:

- 读取"lO 状态"
- 读取值减 8

(AND[0x08])

写入"IO 状态"

# 4.2.4 设置数字输出(仅限多通道版本)

IQ+FLOW®多通道印刷电路板配有三个数字输出。数字输出可用于驱动截止阀(例如)。可通过"IO 开关状态" 参数,读取或写入数字输出。可按照下表各值,进行参数设置。注:该参数与通道无关。每个输出都可以通过 所有通道进行访问。例如:可打开/关闭通道 1 关断阀,通过通道 2 写入该参数。

#### IO 交换状态

| 类型     | 访问  | 范围 | FlowDDE | FLOW-BUS | Modbus       |
|--------|-----|----|---------|----------|--------------|
| 无符号长整型 | R/W | 07 | 288     | 114/31   | 0xF2F8/62201 |

| 值 | 状态输出1 | 状态输出 2 | 状态输出3 |
|---|-------|--------|-------|
| 0 | 关闭    | 关闭     | 关闭    |
| 1 | 点亮    | 关闭     | 关闭    |
| 2 | 关闭    | 点亮     | 关闭    |
| 3 | 点亮    | 点亮     | 关闭    |
| 4 | 关闭    | 关闭     | 点亮    |
| 5 | 点亮    | 关闭     | 点亮    |
| 6 | 关闭    | 点亮     | 点亮    |
| 7 | 点亮    | 点亮     | 点亮    |

# 4.2.5 更改从机地址、波特率和奇偶校验

# 通过按钮操作更改节点地址或波特率

正常运行/操作模式下,连按按钮5次,按键间隔不超过1秒。60秒超时时间内,可开始更改仪器节点地址和波特率。

| 步骤 | 操作                                                                                                               | 指示信息                                                                                 | 时间          | 操作                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------|
| 1  | 开始                                                                                                               |                                                                                      |             | 正常运行/操作模式下,连按开关键 5次,按键间隔不超过 1秒。                                                                                     |
| 2  | 设置总线地址十位 数字                                                                                                      | ■ 绿色 LED 指示灯点<br>亮 点亮 0.1 秒,熄灭<br>0.1 秒 按下开关键,数<br>出点亮次数:点亮 0.5<br>秒,熄灭 0.5 秒        | 超时: 60<br>秒 | 按住开关键,数出设置总线地址十位数字所需的绿色 LED 指示灯点亮次数。<br>达到所需点亮次数后,松开开关键。最大计数为12,到达最大计数后,从0开始重新计数。<br>计数失败后,长按开关键,重新开始计数。            |
| 3  | 设置总线地址个位数字                                                                                                       | ■ 红色 LED 指示灯点<br>亮 点亮 0.1 秒,熄灭<br>0.1 秒 按下开关键,数<br>出点亮次数:点亮 0.5<br>秒,熄灭 0.5 秒        |             | 按住开关键,数出设置总线地址个位数字所需的红色 LED 指示灯点亮次数。<br>达到所需点亮次数后,松开开关键。最大计数为9,到达最大计数后,从0开始重新计数。<br>计数失败后,长按开关键,重新开始计数。             |
| 4  | 设置现场总线通信<br>波特率。<br>1= 9600 Baud<br>2= 19200 Baud<br>3= 38400 Baud<br>4= 56000 波特<br>5= 57600 波特<br>6= 115200 波特 | ■绿色和■红色 LED<br>指示灯都点亮 点亮<br>0.1 秒,熄灭 0.1 秒接<br>下开关键,数出点亮<br>次数:点亮 0.5 秒,熄<br>灭 0.5 秒 | 超时: 60<br>秒 | 按住开关键,数出设置波特率所需的绿色和红色 LED 指示灯点亮次数。<br>达到所需点亮次数后,松开开关键。最大计数为5,到达最大计数后,从0开始重新计数。<br>计数失败后,长按开关键,重新开始计数。<br>注:选择0表示不更改 |

仪器返回正常运行/操作模式。若未超出超时时间,更改有效。



值 0 为熄灭 1 秒 (熄灭 0.5 秒/熄灭 0.5 秒)。 如需将值设置为 0,短按开关,1 秒内再次松开。



每次闪光计数前,计数用的LED 指示灯会快速闪烁。

(模式:点亮0.1 秒,熄灭0.1 秒)。按下开关后,LED 指示灯(或两个LED 指示灯)熄灭,开始计数序列。

# 在"配置模式"或正常模式下,更改节点地址、波特率或奇偶校验

通过 RS485 更改 FLOW-BUS 或 Modbus 配置相应波特率、节点地址或奇偶校验步骤(仅限单通道版本)参见**第** 3.5.3 节。可选总线参数及其相应值如下表所示。



在正常运行/操作模式下,任何参数更改均可能导致失去与仪器间的通信。重启后,仪器可以新选参数进行通信。如有任何疑问,请使用按钮激活"配置模式"(38k4 和 RS232 FLOW-BUS (ProPar))。

#### 现场总线 2 选择

| 类型     | 访问    | 范围 | FlowDDE | FLOW-BUS | Modbus       |
|--------|-------|----|---------|----------|--------------|
| 无符号字符型 | R/W P | 03 | 308     | 124/8    | 0xFC40/64577 |

该参数用于设置现场总线类型。参数值 0 = FLOW-BUS, 1 = Modbus RTU, 2 = Propar, 3 = Modbus ASCII

#### 现场总线 2 地址

| 类型     | 访问    | 范围   | FlowDDE | FLOW-BUS | Modbus       |
|--------|-------|------|---------|----------|--------------|
| 无符号字符型 | R/W P | 0255 | 309     | 124/10   | 0xFC50/64593 |

节点地址设置为第 3.5.3 节表格所列任何一个允许值,例如'3'.

#### 现场总线 2 波特率

| 类型     | 访问    | 范围     | FlowDDE | FLOW-BUS | Modbus                  |
|--------|-------|--------|---------|----------|-------------------------|
| 无符号字符型 | R/W & | 01E+10 | 310     | 124/9    | 0xFC480xFC49/6458564586 |

波特率设置为第 3.5.3 节表格所列任何一个允许值,例如'19200'.

#### 现场总线 2 介质

| 类型     | 访问    | 范围 | FlowDDE | FLOW-BUS | Modbus       |
|--------|-------|----|---------|----------|--------------|
| 无符号字符型 | R/W & | 01 | 311     | 124/11   | 0xFC58/64601 |

选择通信介质。参数值 0 = RS232, 1 = RS485

## Fieldbus2 奇偶校验

| 类型     | 访问    | 范围 | FlowDDE | FLOW-BUS | Modbus       |
|--------|-------|----|---------|----------|--------------|
| 无符号字符型 | R/W 🔑 | 02 | 336     | 124/12   | 0xFC60/64609 |

为 Modbus 通信设置奇偶校验。参数值 0=无, 1=奇数, 2=偶数。

# 5 故障排除和维修

# 5.1 一般规定

为准确分析仪器操作是否正常,建议在未施加流体供应压力情况下,将该装置从生产线拆下后进行检查。若装置污损或堵塞,可松开配件,目视检查确定相应情况。

对仪表进行通电或断电操作,确认是否存在电器故障。随后,施加流体压力,检查仪表读数变化。若怀疑仪器 存在泄漏情形,请勿拆卸设备自行检查。请联系当地经销商,要求服务或维修。

# 5.2 指示灯指示

仪器红色 LED 指示灯指示错误或警报情况。

| ■ 红色 LED 指<br>示灯 | 时间 | 指示信息                                       |
|------------------|----|--------------------------------------------|
| 关闭               | 连续 | "没有错误"                                     |
| 点亮               | 连续 | 出现重大错误消息。<br>仪器出现重大错误。<br>进一步使用前,需先对仪器进行维修 |



更多详细信息,参见<u>数字仪器操作手册(文档号:9.17.023)</u>

# 5.3 故障排除常见情况

| 故障征兆                  | 可能原因                         | 操作                                                  |
|-----------------------|------------------------------|-----------------------------------------------------|
| 无输出信号                 | 未接通电源                        | 检查电源和连接                                             |
|                       |                              | 检查电缆连接和连接。                                          |
|                       |                              | 检查 LED 指示灯状态: 参见 <u>数字仪器</u><br>操作手册(文档号: 9.17.023) |
|                       | 电缆损坏或连接出错                    | 检查并比较电缆两端信号。                                        |
|                       | 由于长时间短路和/或高电压峰值导致<br>印刷电路板损坏 | 返厂维修                                                |
|                       | 入口压力为零或过低                    | 增加入口压力                                              |
|                       |                              | 打开入口和出口处的关断阀                                        |
|                       | 供应压力过高,或仪表压差过大               | 降低供应压力                                              |
|                       | 传感器故障                        | 返厂维修                                                |
| 输出信号最大                | 传感器故障                        | 返厂维修                                                |
| 输出信号远低于设定点信号<br>或期望流量 | 流体类型不正确或入口压力过低               | 在设计条件下测试仪表                                          |
| 振荡/信号背噪               | 供应压力调节器振荡或尺寸错误               | 更换压力调节器                                             |
| 流量为零情况下,显示小流量         | 因零点升高导致无流量时零点读数增<br>加        | 执行自动校零操作                                            |
| 无数字通信                 | 总线地址占用或错误                    | 用软件更改地址                                             |

# 5.4 服务

如有任何产品相关疑问,或认为产品不符合订单指定规格,请联系 Bronkhorst 代表。无论因何原因联系 Bronkhorst 代表,请务必备妥产品序列号,以便我司快速有效为您提供帮助。根据序列号(SN),我司可快速了解原始采 购订单信息,序列号可在产品上找到。

如需了解 Bronkhorst®和全球服务地址的最新信息,请访问我司网站:



# www.bronkhorst.com

对于我司产品,您有什么疑问吗?我司销售部非常乐意为您提供帮助,助您选购可适用您的具体应用场景的正 确产品。如需联系我司销售部,可发邮件至:



# sales@bronkhorst.com

如遇售后问题,或需要帮助和指导,可通过电子邮件联系我司客户服务部:



# aftersales@bronkhorst.com

无论您位于世界哪个时区,我司客户服务部专家均可针对您的特定需求作出响应,或采取适当后续行动。如需 联系我司专家团队,请拨打:



#### BRONKHORST HIGH-TECH B.V.

Nijverheidsstraat 1A

AK Ruurlo,邮编: NL-7261

荷兰

# 6 退回

# 6.1 拆除和退货说明

退回时,请务必随附一份故障单,指明设备当前问题,并列明所需维修事项(如有可能)。

#### 仪器操作:

- 1. 清洗全部流体管路(如适用)
- 2. 若仪器曾和有毒或其他危险流体一起使用,退回前,请对仪器进行清洗
- 3. 断开所有外部电缆与管道,将仪器从生产线上拆下
- 4. 如适用,使用适当的运输安全材料,固定可移动部件,避免运输期间出现损坏
- 5. 包装前,务必确保仪器处于环境温度条件下
- 6. 将仪器装入塑料包装袋,并进行密封处理
- 7. 将该包装袋装入适当运输包装内;如有可能,请使用原包装盒包装

#### 添加文档:

- 退回原因
- 故障症状
- 污染状况
- 故障单



**若设备曾接触过有毒或危险流体,请务必告知工厂!** 这样,工厂就可采取相应防护措施,确保维修 部员工安全。

请务必完整填写"去污声明",并随设备一并退回。如未提供该声明,退回设备一律不予接收。



可从 Bronkhorst 网站 (www.bronkhorst.com) 服务与支持部分下载包含"故障单"的安全信息文档(文档号: 9.17.032)。

#### 重要事项:

请在包装上方清晰注明 Bronkhorst High-Tech B.V.客户报关编号:

#### NL801989978B01

(如适用,也可联系 Bronkhorst 代表,安排本地维修。)

# 6.2 处置(使用寿命结束)

若您位于欧盟境内,且需处置带打叉带轮垃圾桶标识的 Bronkhorst®设备,可根据<u>拆除和退货说明</u>,将仪器退回我司。Bronkhorst 会负责开展适当的拆卸、回收和/或再利用(只要可能)工作。请附信注明,退回产品,进行产品处置。



在欧盟以外的其他国家,电子电气设备(EEE)处置相关事宜应符合当地或国家指令和/或立法。请咨询当地或国家当局,了解所在区域如何正确处理 EEE(如适用)。